Chemical Oceanography Metal Geochemistry

Dr. David K. Ryan
Department of Chemistry
University of Massachusetts Lowell
&
Intercampus Marine Sciences Graduate Program

http://faculty.uml.edu/david_ryan/84.653

Metal Geochemistry

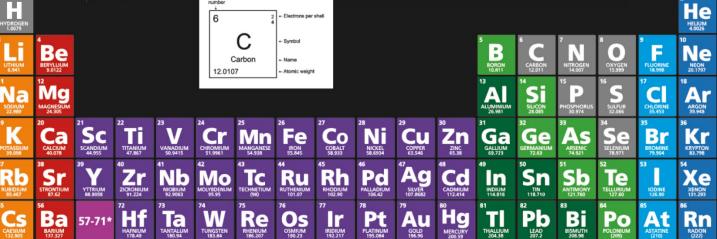
- **#** Read Emerson & Hedges Chapter 12
- Read paper Donat & Bruland (1995)
- **■** Read paper by Nieboer & Richardson (1980)

(Papers are posted on website for today's class)

PERIODIC TABLE OF THE ELEMENTS

- Non-metal
- Alkali metal
- Alkaline earth metal
- Transition metal
- Metal
- Metalloid
- Halogen
- Noble gas
- Lanthanide
- Actinide

Rf


Ra

89-103**

Db

Bh BOHRIUM (272)

HS

57	7	58	59	60	61	62	63	64	65	66	67	68	69	70	71
۱,	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	ъ́р	Но	Er	Tm	Yb	Lu
LA	ANTHANUM 138.90	CERIUM 140.116	PRASEODYMIUM 140.90	NEODYMIUM 144.242	PROMETHIUM (145)	SAMARIUM 150.36	EUROPIUM 151.964	GADOLINIUM 157.25	TERIBIUM 158.92	DYSPROSIUM 162.500	HOLMIUM 164.93	ERBIUM 167.259	THULIUM 168.93	YTTERBIUM 173.054	LUTETIUM 174.9668
89	•	90	90	92	93	94	95	96	97	98	99	100	101	102	103
*	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Ds

Rg

Nh

Cn

FI

Mc Lv

OG OGANESSON (294)

Ts

Concerned with Metal Ions (Geochemistry)

- **■** Typically cations (Cu²⁺, Cd²⁺)
- \blacksquare Some anions (CrO₄²⁻, MoO₄²⁻, AsO₄³⁻)
- **■** General properties of interest
 - Reactivity
 - Redox oxidation/reduction reactions
 - **■** Complexation or Sorption
 - Speciation forms
 - Cycling ultimate fate
 - Transport mobility
 - Toxicity/Bioavailability/Bioaccumulation

Biogeochemical Processes

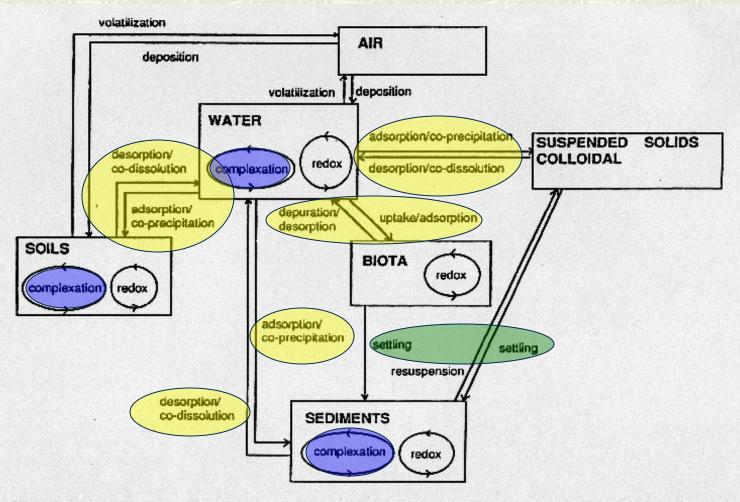
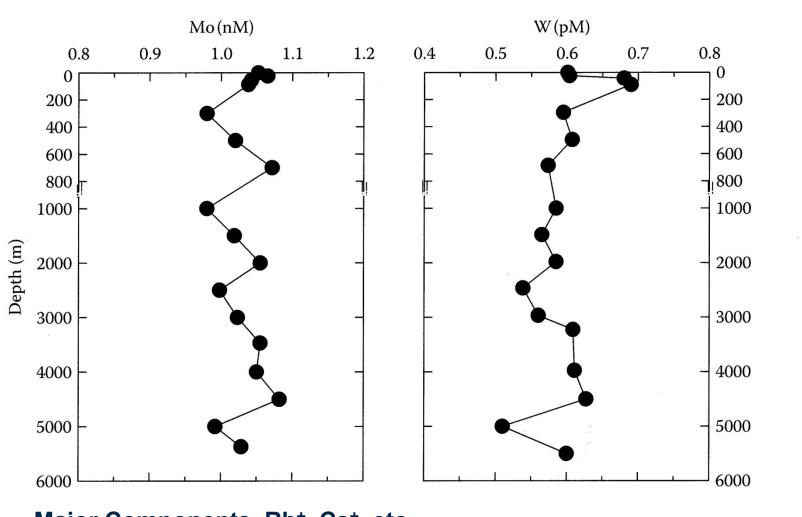


Figure 3.1. Schematic diagram of processes controlling the biogeochemical cycling of metals in aquatic environments.

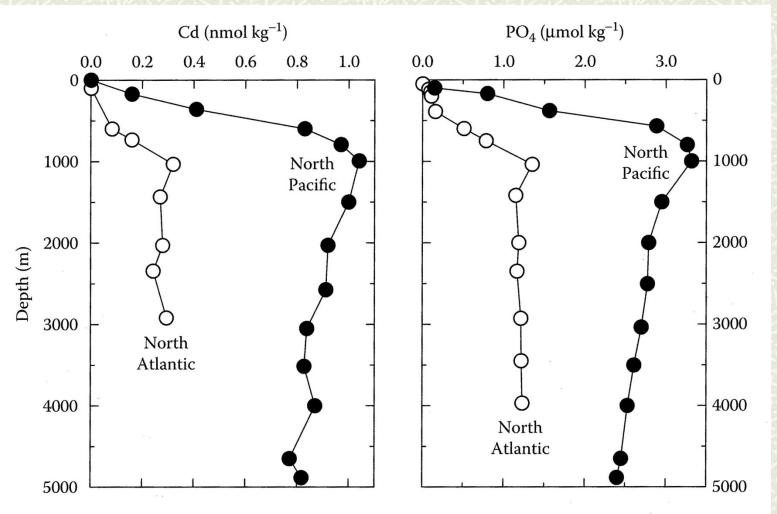
Classification Schemes for Metals


- **♯** Concentration Major, Minor, Trace
- Biological Reactivity Biolimiting,
 Biointermediate, Biounlimited, Noncycling
- **■** Chemical Reactivity d⁰, d¹⁰, Intermediate or Class A, Class B, Intermediate
- **■** Overall Reactivity Nutrient Type, Particle Reactive, Other
- **♯** Environmental Origin − Crustal, Pollutant (anthropogenic)

Concentration levels

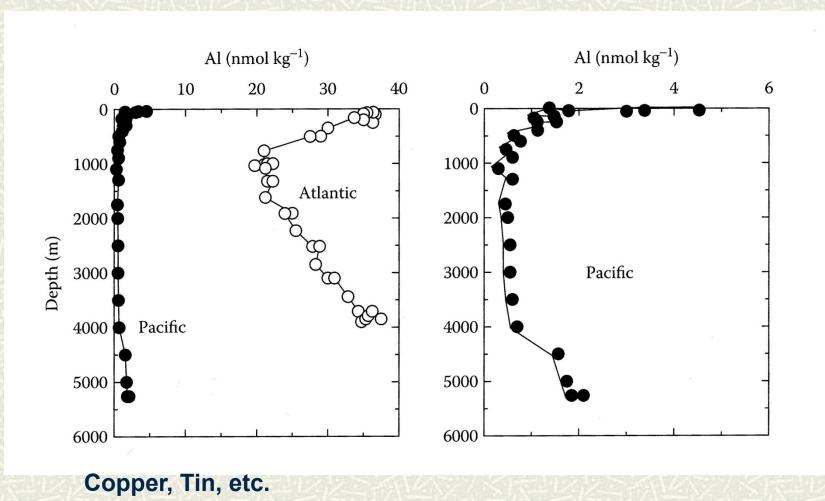
- Major ions discussed previously
 metals & non metals (Ca²⁺, Mg²⁺, Na⁺, K⁺)
- **#** Minor ions − some mention (Ba²⁺, Sr²⁺, etc.)
- **#** Trace ions (Trace Metals) − all the rest
- **#** Millero
 - Major: 0.05 to 750 mM
 - Minor: 0.05 to 50 μM
 - Trace: 0.05 to 50 nM

Depth Profiles for Mo & W

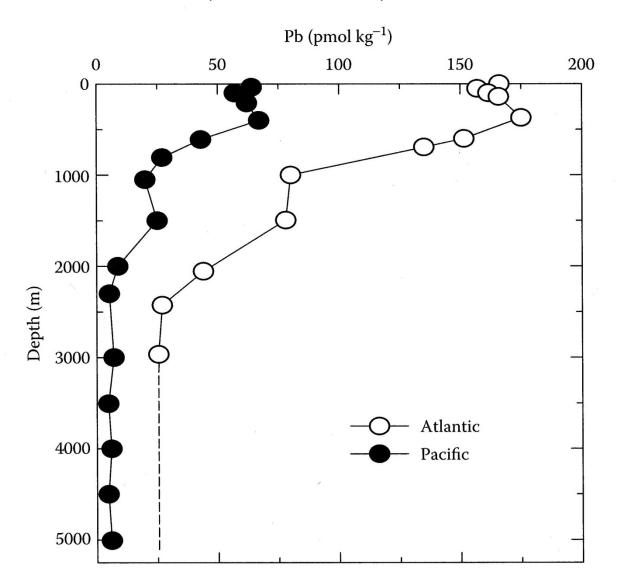

Conservative behavior (Millero 2006)

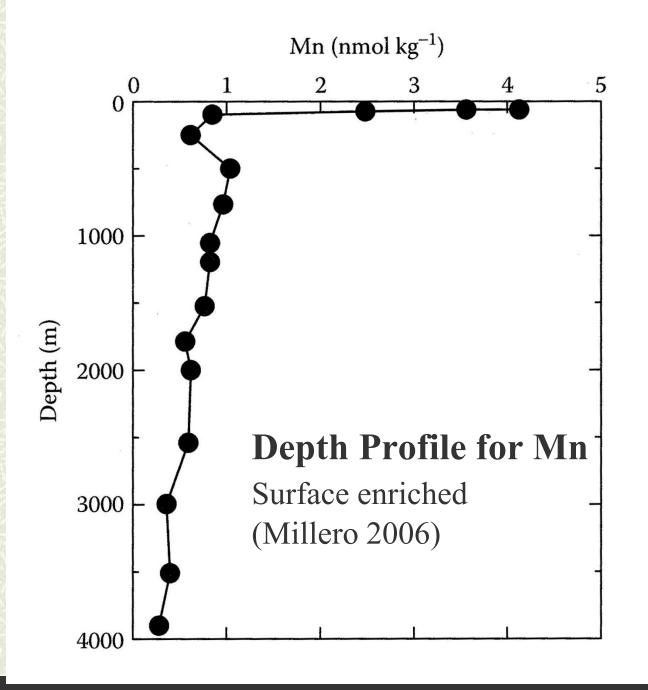
Major Components, Rb+, Cs+, etc.

Depth Profiles for Cd & P


Nutrient behavior (Millero 2006)

Nitrate, Silicate, Zinc, Barium, etc.

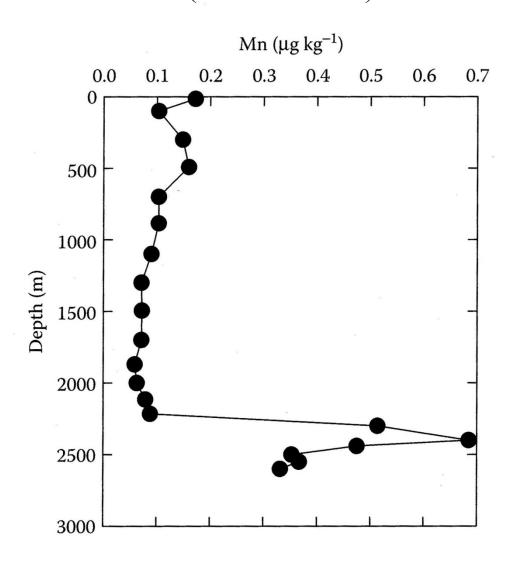

Depth Profiles for Al


Mid-depth minimum (Millero 2006)



Depth Profiles for Pb

Surface enriched (Millero 2006)



Depth Profile for Mn

Anomolous (Millero 2006)

Vertical Profiles of Elements in the Pacific Ocean

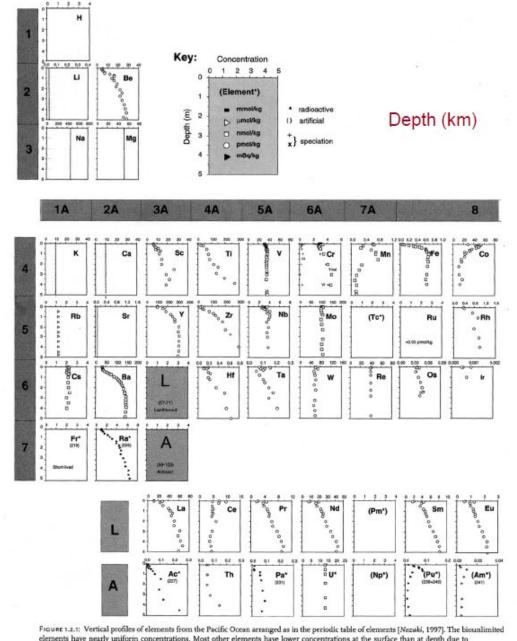
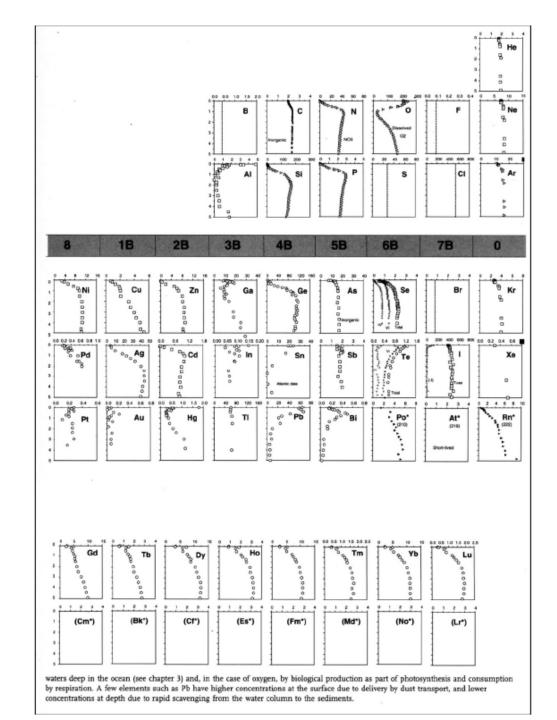
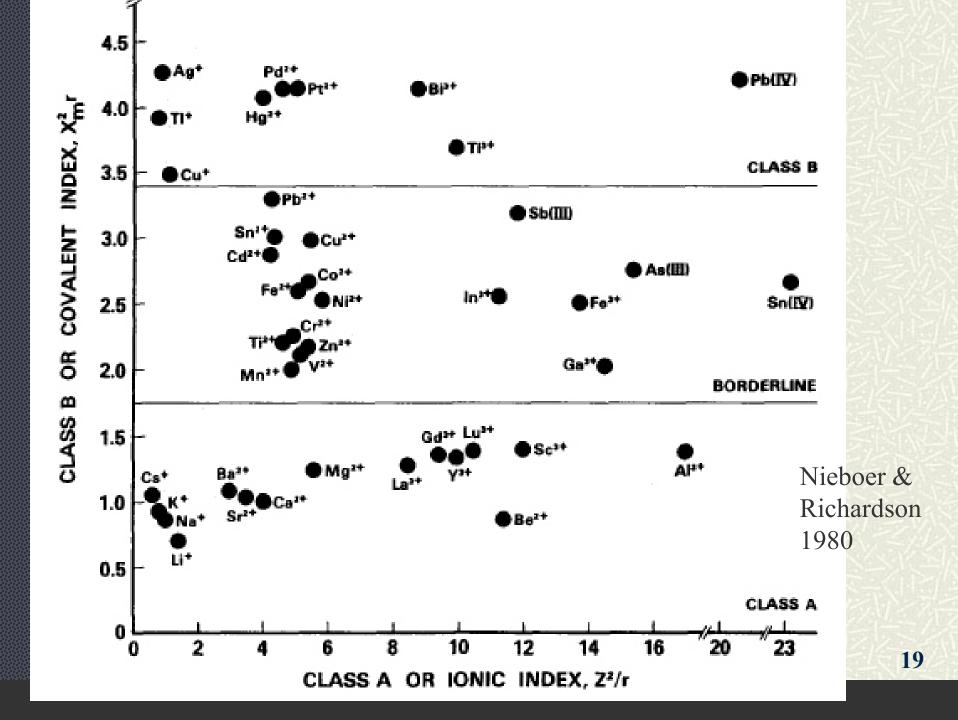


FIGURE 1.2.1: Vertical profiles of elements from the Pacific Ocean arranged as in the periodic table of elements [Nozaki, 1997]. The biounlimite elements have nearly uniform concentrations. Most other elements have lower concentrations at the surface than at depth due to biological removal. Biolimiting elements are nearly depleted to 0 mmol m⁻¹ at the surface, whereas biointermediate elements show only partial depletion. Oxygen and the noble gases on the right side of the figure are influenced in part by their higher solubility in colder




Table 1. Estimated mean oceanic concentrations of the elements and the references on which the periodic chart (Figure 1) is based.

Atomic Number	Element	Species	Type of Distribution	Oceanic mean Concentration (ng/kg)	<u>Reference</u>
1	Hydrogen	H ₂ O			
2	Helium	Dissolved gas	С	7.6	Clarke et al. (1970)
3	Lithium	Li ⁺	С	180×10^{3}	Stoffyn-Egli and Mackenzie (1984)
4	Beryllium		s+n	0.21	Measures and Edmond (1982)
5	Boron	Borate	С	4.5×10^{6}	Noakes and Hood (1961)
6	Carbon	Inorganic CO ₂	n	27.0×10^{6}	Broecker and Takahashi (1978)
7	Nitrogen	Dissolved N_2	С	8.3×10^{6}	Craig et al. (1967)
		NO ₃	n	0.42×10^{6}	GEOSECS Operation Group (1987
8	Oxygen	Dissolved O ₂	inverse n	2.8×10^{6}	GEOSECS Operation Group (1987
9	Fluorine	F	С	1.3×10^{6}	Bewers et al. (1973)
10	Neon	Dissolved gas	С	160	Craig et al. (1967)
11	Sodium	Na ⁺	С	10.78×10^{9}	Millero and Leung (1976)
12	Magnesium	${\rm Mg}^{2+}$	С	1.28×10^{9}	Carpenter and Manella (1973)
13	Aluminum		S	30	Orians and Bruland (1985)
14	Silicon	Reactive SiO ₂	n	2.8×10^{6}	GEOSECS Operation Group (1987
15	Phosphorus	Reactive PO ₄	n	62×10^3	GEOSECS Operation Group (1987
16	Sulfur	SO ₄ ²⁻	С	898×10^{6}	Morris and Riley (1966)
17	Chlorine	Cl	С	19.35 x 10 ⁹	Wilson (1975)
18	Argon	Dissolved gas	С	0.62×10^6	Craig et al. (1967)
19	Potassium	\mathbf{K}^{+}	С	399 x 10 ⁶	Culkin and Cox (1966)

Distribution patterns are classified into the following four categories: <u>conservative</u>, <u>nutrient-type</u>, <u>scavenged</u>, and redox-controlled

Classification Schemes for Metals

- **♯** Concentration Major, Minor, Trace
- **■** Chemical Reactivity d⁰, d¹⁰, Intermediate or Class A, Class B, Borderline
- **♯** Environmental Origin − Crustal, Pollutant (anthropogenic)

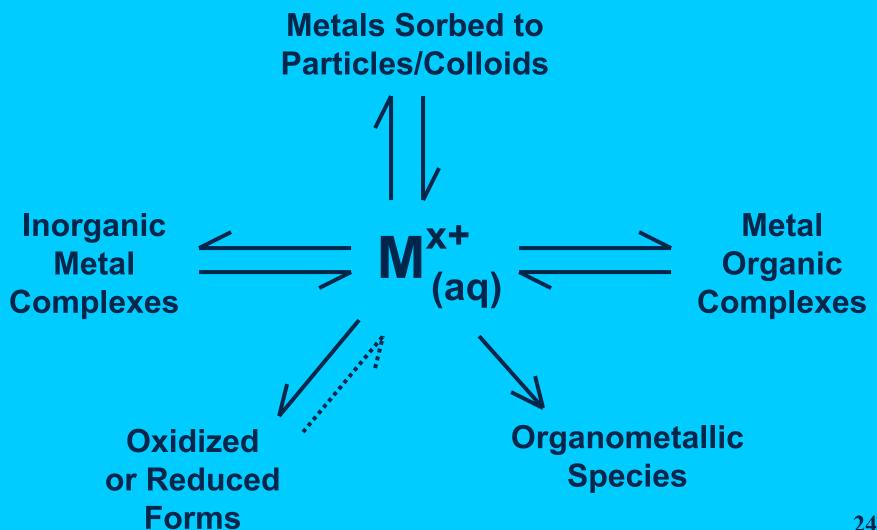
Importance of Humic Materials (Natural Organics)

Global Carbon Reservoir Take Part in Interfacial Phenomena **Undergo Coagulation and Aggregation Involved in Photochemical Reactions Contain Radicals Known Reducing Agents Methylate Metals** Form Chlorinated Species, THMs DBPs **Detoxify Metals Limit Bioavailability of Metals Alter Solubility Influence Transport Bind Metals & Organic Pollutants Terminal Electron Acceptor for Bacteria**

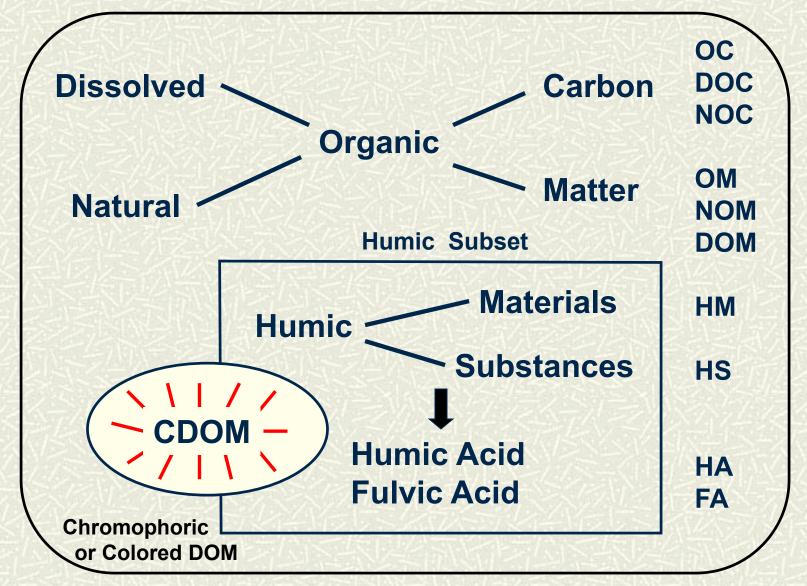
Metal Complexation by Humic Materials

Leenheer et al. (1998)

Morel (1983)


Importance of Humic Materials **Global Carbon Reservoir Take Part in Interfacial Phenomena Undergo Coagulation and Aggregation Involved in Photochemical Reactions Contain Radicals Known Reducing Agents Methylate Metals** Form Chlorinated Species, THMs DBPs **Detoxify Metals Limit Bioavailability of Metals Alter Solubility Influence Transport Bind Metals & Organic Pollutants Terminal Electron Acceptor for Bacteria**

Humic material will aggregate & may 'salt out' with cations


FIGURE 6. Structural model of a calcium inner-sphere complex

Leenheer, J.A. et al. (1998) Environ. Sci. Technol. 32, 2410

Dissolved Metal Species

All Dissolved Organic Compounds

Metal Organic Complexes

M^{x+}

NOMy-

NOMy-

M_X+

M_X+

NOMy-

M^{x+}

M-NOM(x-y)-

 M^{x+} = metal ion, toxic or non, of charge x+ (e.g., Cu^{2+} , Al^{3+} , etc.) NOM^{y-} = natural organic matter of varying negative charge $y_{\overline{26}}$ $M-NOM^{(y-x)-}$ = metal complex of natural organic matter